Comparison of Waldhausen constructions

نویسندگان

چکیده

In previous work, we develop a generalized Waldhausen $S_{\bullet}$-construction whose input is an augmented stable double Segal space and output unital 2-Segal space. Here, prove that this construction recovers the previously known $S_{\bullet}$-constructions for exact categories $(\infty,1)$-categories, as well relative functors.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Of a Waldhausen Category

We give a simple representation of all elements in K1 of a Waldhausen category and prove relations between these representatives which hold in K1.

متن کامل

Duality in Waldhausen Categories

We develop a theory of Spanier–Whitehead duality in categories with cofibrations and weak equivalences (Waldhausen categories, for short). This includes L–theory, the involution on K–theory introduced by [Vo] in a special case, and a map Ξ relating L–theory to the Tate spectrum of Z/2 acting on K–theory. The map Ξ is a distillation of the long exact Rothenberg sequences [Sha], [Ra1], [Ra2], inc...

متن کامل

Waldhausen Additivity: Classical and Quasicategorical

We give a short proof of classical Waldhausen Additivity, and then prove Waldhausen Additivity for an ∞-version of Waldhausen K-theory. Namely, we prove that Waldhausen K-theory sends a split-exact sequence of Waldausen quasicategories A → E → B to a stable equivalence of spectra K(E) → K(A) ∨ K(B) under a few mild hypotheses. For example, each cofiber sequence in A of the form A0 → A1 → ∗ is r...

متن کامل

On K1 of a Waldhausen Category

We give a simple representation of all elements in K1 of a Waldhausen category and prove relations between these representatives which hold in K1.

متن کامل

Comparison of constructions of irregular Gallager codes

The low density parity check codes whose performance is closest to the Shan-non limit arèGallager codes' based on irregular graphs. We compare alternative methods for constructing these graphs and present two results. First, we nd a `super{Poisson' construction which gives a small improvement in empirical performance over a random construction. Second, whereas Gallager codes normally take N 2 t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of K-theory

سال: 2021

ISSN: ['2379-1691', '2379-1683']

DOI: https://doi.org/10.2140/akt.2021.6.97